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A Study of the Thermal Conductivity of 
Alumina/Glass Dispersed Composites1 

M. L. Allitt, 2 A. J. Whittaker,  2 D.  G. Onn, 2 and K. G. Ewsuk 3 

The thermal diffusivity of five groups of alumina/glass composite systems has 
been measured at room temperature using a laser flash system. These data have 
been used, in conjunction with specific heat and density measurements, to 
calculate the effective thermal conductivity of these composites. In each of the 
five groups a systematic variation in glass concentration was made, and each 
group represents systematic variations in glass and alumina particle sizes. The 
thermal conductivities calculated are compared w~,th those predicted by four 
models. It is apparent from these comparisons that the geometry and orienta- 
tion of porosity within the sample measured are a key factor in determining 
which of these models (if any) is appropriate for describing the thermal conduc- 
tivity of these composites. 
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1. I N T R O D U C T I O N  

As integrated circuits become faster and more densely packed, the need for 
new substrate materials grows. Due to the high frequencies at which 
modern microchips work, these substrates should have a low dielectric con- 
stant while also possessing an ability to dissipate efficiently the increased 
heat generated by such dense circuits. Of increasing interest are composites, 
comprising two different materials, each possessing one of the desired 
properties. The dielectric constant and thermal conductivity of such a 
composite depend upon the relative proportions of its constituent phases 
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and so the material can be manufactured with properties from within a 
broad range. 

The composites studied in this work all combine the relatively high 
thermal conductivity of alumina with the low dielectric constant of alkaline 
earth atumino-borate glass (AEAB). An advantage of this system is that 
high processing temperatures are not required--all samples were vacuum 
hot pressed at temperatures in the range 675-900~ in a 1.27-cm graphite 
die at 50 MPa. Over the five different series of composites studied, there are 
systematic variations in the particle sizes of both the glass and the alumina 
(see Table I) and within each series the volume ratio of glass to alumina 
was varied systematically. 

2. EXPERIMENTAL RESULTS 

2.1. Experimental Method 

The thermal diffusivity, ~, of each sample was measured by the laser 
flash method [5]. The density, p, of each sample was measured using 
Archimedes' principle [6]. Specific heat, Cp, was obtained using an elec- 
tronic pulse technique [7] to measure directly the specific heat of a sample 
of fully dense alumina and of a sample of fully dense AEAB glass. The 
specific heat of intermediate compositions can then be obtained using the 
rule of mixtures. 

With these data the thermal conductivity, K, of each sample can be 
calculated from the following relationship: 

K=~pCp (1) 

The maximum total error in this calculated thermal conductivity is 
estimated to be _+ 15 %. 

Table I. Median Particle Sizes of 
Composite Components: Series E is Series C 

Re-Pressed to a Greater Density 

Particle size (pm) 

Series Alumina Glass 

A 1.5 2.9 
B 3.2 1.7 
C 3.2 2.6 
D 0.4 2.6 
E 3.2 2.6 



Thermal Conductivity of Alumina]Glass Composites 1055 

2.2. Discussion of Experimental Results 

The thermal conductivity values obtained as described above are 
plotted in Fig. 1 as a function of nominal alumina volume fraction. Note 
that this is not the true volume fraction of alumina present in the material, 
but a volume fraction computed as the ratio of the volume of alumina pre- 
sent to the total volume occupied by the alumina plus glass, i.e., the volume 
occupied by porosity is neglected. 

The figure shows that all five series follow basically the same 
t rend-- the thermal conductivity rises with increased alumina content to 
some threshold value, which occurs in most cases at a nominal alumina 
volume fraction of 65-70%, after which a decrease is observed. Density 
measurements show that there is a rapid increase in the volume fraction of 
porosity present in the sample at this nominal alumina volume fraction. 
The figure also shows that there is little variation in the magnitude of the 
thermal conductivity between different series, for a given nominal alumina 
volume fraction. This indicates that neither the alumina particle size nor 
the glass particle size has a major effect on the final thermal conductivity 
of the composite. 

3. COMPARISON WITH THEORY 

3.1. Review of Analyses 

3.1.1. The Maxwell  Model 

In steady state, the heat flow equation reduces to Laplace's equation: 
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Fig. 1. Calculated thermal conductivity of alumina/glass composites. 
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where T is the temperature at any point in the material. Taking a picture 
of a composite of one type of spherical particle dispersed in a continuous 
phase of differing thermal conductivity, with the concentration of the 
dispersed phase low enough that the particles remain far enough apart so 
as not to interact with each other, potential theory can then be applied to 
Eq. (3) to yield the Maxwell [1] model: 

~Kd+ZK~+ZVd(Ka~K~)~ 
Ke=Kc ( Ka+2Kc - Vd(Ka_Kc ) j (3) 

where Ke is the effective composite thermal conductivity, Kd and Vd are the 
thermal conductivity and volume fraction of the discontinuous phase, 
respectively, and Ko is the thermal conductivity of the continuous phase. It 
has been shown by Ewsuk et al. [8] on the basis of this model that the 
thermal conductivity of alumina glass dispersed composites containing 
minimal porosity is dominated by the thermal conductivity of the con- 
tinuous phase. Note that this model applies in this form only to two-phase 
systems. 

3.1.2. The Kerner Model 

Kerner [2] viewed the suspended, spherical particles of the discon- 
tinuous phase to be surrounded by a shell of the continuous phase. Suf- 
ficiently far from this shell the composite is on average a homogeneous 
medium with the same conductivity as the effective composite conductivity. 
Continuity demands that in between there is a region of variable and 
unknown conductivity. Kerner showed that for spherical inclusions the 
properties of this intermediate zone are unimportant and so derived a 
relationship for the effective composite conductivity valid for all volume 
fractions of dispersed phase less than 1: 

~ K i gi 3KI 
K~ - i= 1 Ki + 2K~ (4) 

i Vi Ki~K;K 1 
i=1  

Here the label 1 refers to the continuous phase. Note that this model 
applies to any number, n, of dispersed, spherical phases within the 
continuous phase. For the case of one dispersed phase it reduces to the 
Maxwell model above. 

3.1.3. The Clayton Model 

Bruggeman [9] derived a model for the thermal conductivity of a 
spherical phase dispersed in a continuous matrix on the basis of an effective 
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medium theory similar to that later used by Kerner. A composite of ther- 
mal conductivity Kr is constructed from spherical inclusions dispersed in a 
continuous phase to yield an average effective medium. The small change 
in thermal conductivity of the composite arising from the further addition 
of an infinitesimal amount of t,he discontinuous phase is then calculated 
and an equation relating Ke to the concentrations and conductivities of the 
two phases present obtained by integration. Clayton [3] generalized this 
approach to allow for the possibility of the dispersed phase being of 
ellipsoidal geometry to give the following relationship: 

= Ka - Kc \K~] (5) 

where x is a factor designed to account for the shape of the inclusions. For 
spheres, x = 2. 

The effective medium approximation used here neglects interparticle 
interactions in the same way as the Maxwell model, and so this approach 
is limited to dilute volume fractions. Again, note that this model is 
applicable only to two-phase systems. 

3.1.4. The Hsu Model 

Hsu and Berzins [-4] have presented another effective medium 
approach. Starting with a homogeneous material of the required thermal 
conductivity, a composite of the desired composition is built up by replacing 
part of the original effective medium with a small amount of one of the 
phases (designated by the subscript 1), thus creating a change in the con- 
ductivity of the whole. A small part of the second phase (subscript 2) is 
then added in such a way as to return the composite conductivity to its 
original value. This process is continued until a composite of the desired 
composition has been created. This approach leads to the following equation: 

{ 1 - F ( e ) ) K 2 +  { Kl[F(e ) -  V,] + K2[F(e ) -  V2] } K~-  K1K2F(e)=O (6) 

where F(e) is a function of the eccentricity of the dispersed phase and is 
designed to take into account the shape and orientation of this phase. For 
spheres, F(e)= 1/3. F(e) is assumed to be the same for both phases, i.e., 
both phases are treated the same and we no longer have a picture involving 
a continuous matrix. One would therefore expect this model to be 
applicable in situations where matrix and filler both tend to cluster and 
form agglomerates within the composite. Again, this model is designed to 
be applied to two-phase composites. 
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3.2. Extension of Two-Phase Models to Three-Phase Systems 

Three of the above four models are designed to apply only to two- 
phase systems. The alumina/glass materials measured in this work are 
three-phase systems, consisting of glass, alumina, and porosity phases. It is 
therefore apparent that some manipulation of these models is required in 
order to apply them to these materials. 

Clayton presented a procedure for doing this with his analysis which 
was subsequently applied with success by Mottram and Taylor [10] and 
Whittaker [ 11 ] in studies of directionally reinforced fibrous composites. A 
similar method should be applicable to other analyses. The first step is to 
calculate the thermal conductivity of a nonporous composite, using as 
input parameters to the models the thermal conductivity of alumina, Kd, 
the thermal conductivity of AEAB glass, Kc, and putting the volume 
fractions of the dispersed and continuous phases Vd and Vc equal to the 
known nominal alumina and glass volume fractions V[ and V~, calculated 
from the known masses of these materials used and their measured 
densities. This yields a thermal conductivity Ke. The value used for K~ was 
measured experimentally to be 1.1 W . m  -1 .K -1. The value of K d used, 
3 0 W . M  -1 .K -1 represents an average of several literature results as 
reviewed by Ewsuk et al. [8] and is in broad agreement with 
measurements made on various other polycrystalline aluminas at the 
University of Delaware. 

The value of Ke so obtained can then be regarded as the thermal 
conductivity of the continuous phase in another composite, containing 
porosity as the dispersed phase. Thus the same model can then be used 
again, with this time the input parameters being Kd = 0, K~ = K~, and Vd 
equal to the porosity volume fraction Vp, with Vr = 1 - Vp. This procedure 
then yields a final effective thermal conductivity for the porous composite 
K', which can then be compared with the experimentally measured data. 
Applying this procedure to the Maxwell, Clayton, and Hsu models then 
gives the following relationships for the final, three-phase, composite 
thermal conductivity. 

Maxwell: 
{ 1 -  V~) 

K; - (T 2t- ) /-~) K~ (7) 

Clayton: 

Hsu: 

K~= (1 - Vp)(X+l)/XKe (8) 

1 - Vp - F ( e )  
K" - Ke (9) 

1 -F(e )  
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Fig. 2. Comparison of predictions of Maxwell, Kerner, Clayton, and 
Hsu models with the results for series C. 

In all cases it is assumed that the porosity is present in the form of 
spherical voids in the matrix. 

3.3. Comparison of Models with Experimental Data 

Figure 2 shows a comparison of the predictions of the four models 
with the values obtained from measured data for the series C. The figure 
shows that the Hsu and Clayton models based on the assumptions outlined 
above do not fit the data well. However, the Maxwell and Kerner models 
give predictions much closer to the measured values. Figure 3 shows a 
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comparison between the Kerner and Maxwell models and the experimental 
results for the series D. In general the Kerner model gives slightly better 
agreement with the data than does the Maxwell model and appears to 
follow the trends in the data closely; however, the predicted magnitudes are 
frequently at variance with those measured. 

Table II. Calculated Values of the Porosity Shape Factors in the Hsu and 
Clayton Models that Will Bring the Predictions of These Models for 

Spherical Alumina in a Glass Matrix into Agreement with Experiment 

Model used for alumina in glass 

Clayton Hsu 
Nominal alumina 

Sample volume fraction x F(e) x V(e) 

A1 0.6 0.08 0.9 0.04 0.93 
A2 0.65 0,06 0.92 0.04 0.94 
A3 0.7 0.07 0.91 0.04 0.93 
A4 0.75 0.14 0.82 0.09 0.86 

B1 0.8 0.19 0.76 0.14 0.78 
B2 0.75 0.23 0.73 0.15 0.77 
B3 0.7 0.35 0.66 0.20 0.74 
B4 0.65 0.32 0.69 0.16 0,78 
B5 0.6 0.39 0.67 0.14 0.81 
B6 0.5 0.31 0.76 0.03 0.96 
B7 0.4 0.39 0.68 0.15 0.82 

C1 0.8 0.22 0.73 0.16 0.76 
C2 0,75 0.19 0.77 0.13 0.82 
C3 0,7 0.10 0.89 0.05 0.92 
C4 0.65 0.10 0.89 0.05 0.92 
C5 0,6 0.11 0.84 0.07 0.87 
C6 05 0.00 1.00 0.00 1.00 
C7 0,4 0.01 0.98 0.01 0.99 

D1 0.8 0.11 0.83 0.09 0.85 
D2 0.75 0.20 0.75 0.14 0.78 
D3 0.7 0.13 0.83 0.08 0.87 
D4 0.65 0.06 0.92 0.04 0.94 
D5 0.6 0.05 0.93 0.03 0.95 
D6 0.5 0.03 0.96 0.02 0.97 
D7 0.4 0.02 0.98 0.01 0.98 

E1 0.7 0.08 0.9 0.04 0.94 
E2 0.65 0.08 0.9 0.04 0.94 
E3 0.5 0.04 0.95 0.02 0.97 
E4 0.4 0.01 0.98 0.01 0.99 
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3.4. Porosity Shape Factors 

Since none of the above models consistently fit the data well, the 
picture of spherical alumina particles and spherical pores dispersed in a 
continuous glass matrix is possibly too simplistic. The Hsu and Clayton 
models both contain parameters that are adjustable according to the shape 
and geometry of the dispersed phase. It is an interesting exercise to use 
these models for the porosity and to calculate the values that the shape 
factors need to have, sample by sample, in order to bring the predictions 
of any particular model into agreement with the experimental data. 
Table II shows calculated values of F(e) and x for all samples that bring 
the predictions of the Clayton and Hsu models into agreement with the 
data. These shape factors show a remarkable consistency, in that there is 
not a great spread in the calculated values through a given series, and also 
for low nominal alumina volume fractions the shape factor is much the 
same for all series, particularly for F(e) when using the Hsu model twice. 
This is perhaps not unreasonable since all the saml~les were manufactured 
by nominally the same technique. 

The calculated values of F(e) lie in the range 0.65 to 1, implying a 
porosity eccentricity of between 0.95 and 1, i.e., by this model the porosity 
is present as thin platelets oriented perpendicular to the direction of heat 
flow. Looking at the values calculated for the Clayton model shape 
parameter we see that its value varies in the range 0 to 0.4. This would 
imply that the c axis of the ellipsoidal pore is several times smaller than its 
other two axes, i.e., we again have the implication that porosity is present 
as thin platelets oriented perpendicular to the direction of heat flow. This 
result is not unreasonable, since the nature of the hot pressing technique is 
such that it is not impossible that some directionality is imparted to the 
system. Isotropic, spherical porosity is not necessarily to be expected. 
However, due to insufficient data on the microstructure of these materials, 
no conclusion can yet be drawn as to the accuracy of this analysis. 

4. CONCLUSIONS 

Evidently the evaluation of the abilities of the four models described 
above to describe the behavior of these systems is complicated by the 
presence of porosity within the samples measured. The results described 
above show that accurate characterization of the system microstructure is 
necessary in order to form conclusions as to the accuracy of these models. 
It is anticipated that such information will be obtained for these materials 
through SEM and also through dielectric constant measurements. 
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